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Existing results on the singularities in the neighbourhood of the plane of symmetry of the wave track of the fundamental solution 
of the linear equation of internal waves in Boussinesq form, obtained for exponential stratification are extended to cover arbitrary 
stratification. Use is made of well-known asymptotic expansions in powers of the mode number of the eigenvalues and 
eigenfunetions of the Sturm-Liouville problem. Apart from the principal singularity, available when using the method of"frozen 
coefficients", the next singularity is singled out and it is demonstrated that this is an essential part of the approximate calculation 
of the wave pattern near the plane of symmetry of the track. © 1999 Elsevier Science Ltd. All rights reserved. 

In existing solutions [1, 2] of similar problems of the perturbation field of a fluid is represented as an 
expansion in terms of internal wave modes. Two regions in which the corresponding series are irregular 
are the near field and the neighbourhood of the plane of symmetry of the wave track. Constructive 
representations of the solution in these regions have been obtained for the special case of uniform 
stratification [3],:I: and the principal term of the near-field singularity has been singled out for any 
Viiisala-Brunt frequency distribution [4]. The results reported in the paper cited in the footnote that 
apply to both regions of irregularity are extended to a fluid of variable stratification with one maximum 
of the Vaisal~-Brunt frequency. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

Consider the perturbation field generated by a submerged dipole in uniform motion in a layer of 
inviscid incompressible vertically-stratified fluid. 

Suppose the fluid occupies the region - oo < x t , y  < ~, - h < z < 0, and the V~iis~il~i-Brunt frequency 
N ( z )  depends only on the vertical coordinate z. At a depth h0 from the top of the fluid z = 0 a point 
dipole with moment M, oriented in the direction of motion, is moving with constant velocity c in the 
negative direction of the horizontal axis Xl. In the system of coordinates associated with the dipole 
x = xt  - ct, using a Boussinesq approximation and the "solid cover" condition on the surface z = 0, the 
steady field of vertical displacements of fluid particles ~(x, y, z) is described in a linear formulation by 
the equation with boundary conditions 

A~,+ + N 2 (Z)c-2A2~ = Mc-16(x, y, z + ho)z,z, ~ ( -h )  = ~(0) = 0 (1.1) 

(A 2 = ~ 2 1 a r 2  +a21ay2 ,  A=A2+a21~z 2) 

to which must be added the radiation condition: basic wave perturbations are formed behind the dipole. 
An exact solution of problem (1.1) is obtained in [2] in the form of single integrals of an expansion 

in powers of the modes (H(.) is the Heaviside function) 

tPrik2 Mat. MekJ~ Vol. 62, No. 5, pp. 796--802, 1998. 
:[:See also: SANNIKOV, V. E, Singularities in the expansion in terms of modes of the wave field generated by a point dipole 

in the ~tratified fluid flow. Sevastopol, 1990, Dep. VINITI 29.06.1990. No. 3700-V90. Prikl. Mat. Mekh., 1998, 62, 796-802. 
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= M(2gc)-l[~0(I x t,y,z) + H(x)~,(x,y,z)] (1.2) 

i.w 

0 n=l 

(1.3) 

x12 
; , = - I m  J ~, cp. exp(s~lx)d0 (1.4) 

-X /2  n=l 

tt = x cos  0 + y s i n  0, X = ( c o o s 0 )  -2 

¢n(z, ho;Z,) = w.(z;X)w,~(-ho;X(~ h w~(z;~.)dz) -~ 

Expressions (1.3) and (1.4) contain the eigenvalues 13nQ. ), (13] < I]2 < 1~3 < ""  ") and eigenfunctions 
Wn(Z; ~.) of the Sturm-Liouville problem 

w.+[N2(z)X-~]w=O ( - h < z < 0 ) ,  w(-h)fw(O)=O (1.5) 

Formula (1.2) separates out two components of the vertical displacement field. The wave numbers 
in the modal expansion in the first of these (~)  are pure imaginary, so that ~o describes the near field 
of perturbations of the fluid. In the second (~1) the wave numbers are real and ~1 represents the wave 
track behind the dipole. 

The expansion of ~(x, y, z) in a sum of modes is most appropriate for calculating the perturbation 
field in cases where one can confmeoneself to a small number of modes. If many modes are taken into 
account in (1.3) and (1.4) or in the analogous formulae in [1] it is then necessary to establish the 
corresponding number of dispersion relations I]nQ') and eigenfunctions Wn(Z; ~.) over a wide range of 
variation of the parameter Z., which involves a large amount of computation in cases of practical 
importance, when 13n(L) and w,,(z; L) cannot be found analytically. 

There are two regions of the perturbation field which must be taken into account in this connection. 
The first of these is the near region R < h, R = 4(x 2 + y2), where series (1.3) converges slowly and its 
terms have a logarithmic singularity at R = 0. The second is the neighbourhood of the plane of symmetry 
of the wave tracky = 0, which enters the zone of basic wave perturbations of all the modes. 

A constructive representation ~(x,y, z) for these regions can be obtained by isolating the singularities 
of the terms of the solution ~0 and ~1, thereby ensuring the corresponding series to converge more rapidly 
(el. the paper cited in the footnote). 

2. ISOLATION OF THE N E A R - F I E L D  S I N G U L A R I T I E S  

We base our investigation of series (1.3) on the fact that the values of the parameter L are bounded 
on the integration contour in (1.3) (0 ~< ~. ~ c-2). 

We use the asymptotic forms of the eigenvalues and eigenfunctions of problem (1.5) as n -+ oo 

[ I .= -k~ ,  k ~ = Z ~ n - x r ( O ) + o (  X ) h  xa ~"  

w.(z;X) = sin xnz + - -q (z )cos  + (2.1) 
h -g- ffJ! 

r(z) = l )s N2 tz, )dzi, qtz) = rtz)h - rt0)tz + h) 

A sufficient condition for (2.1) to be valid [5] is that the variation of the function NE(z) should be 
bounded. Using (2.1), we find the asymptotic form as n ~ oo, uniform with respect to the parameter 
of integration 0, of terms of series (1.3) 

q~nexp(-ka~t)=bno +bn| +F.n, g=O(Xl~tlln) 

bnofr~Bjno, b.l=:~Bn[f.t+r(O)lff.ol; B n = - ~ f e x - - ~ l ~  
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f,~ff~+f~, k=O,1; f~=sinh(z+ho), f~= rm p,(z)cos-~-(z + ho) 

p±(z) = q(z)± q(-ho) 

We now represent the expansion for ~ in the form 

= ~ + ~ l  + to= (2.2) 

~ok = Im I £ b~d0, k = 0,1 (2.3) 
0 n=l 

~ol =Im I £ tip, exp(-knl.t)H(-~ln) - bno - b,I ld0 (2.4) 
0 n=l 

Note that when R = 0 the series in (2.3) diverge and the series in (2.4) no longer has that singularity. 
We now put ~0 and ~1 in a form which enables us to compute ~ for small values of R. To do so, we 

first use Poisson's summation formula to transform the series 

1 ] ,:,~: b,o --7._. ._.  az Li,~ +(d. +#~)2 + 1~2 +(d. _#~)2 
d= = z + 2mh 

Then, substituting the resulting series into the expression for ~00 and integrating it term-by-term, we 
obtain an expression which converges for all R 

~oa(X,y, z) = rio(R, z + ho)+ rio(R, z - ho) (2.5) 

rlo(R,z) =1-- ~ dra(d2m + R2) -~ 
2 tn=-.~ 

We then derive a similar expression for ~1, using (2.5). Note first that 

aX 2 401 = C ~  P+'~zlI°(R'z-h°)+P-'~z ll°(R'z+h°)-r(O R +2 

Substituting 110 and ~ from (2.5) into this formula and then integrating the resulting series twice 
with respect to x, we find 

~ol ~P÷rll(x,Y,z-ho)+P-'qi(x,Y,z+ho)+r(O)[rl2 (x'y'z-ho)+rl2(x'y'z+h°)] (2.6) 

[x(d~ d= ] 
"qv 

: ,c - . : - ( y ' - - , . )  +da J 
The terms with m = 0 of the series rio(R, z) and fly(x, y2) (v = 1, 2) are irregular at the point where 

the dipole is situated x = y = 0, z = --ho--they absorb the singularity of the solution, and the actual 
series converge everywhere. If there is no stratification (we have a homogeneous fluid, N2(z) -= 0) the 

1 function M(2nc)- ~ is an exact solution of problem (1.1). 
Thus, from expression (2.2), in which (,o0 is calculated using formula (2.5), and ~0 using formula (2.6), 

we can calculate the term ~o of the near-field solution of the problem. Note that since the terms of the 
series in the expression for g0 of (2.2) do not decrease as n increases when R = 0, it is not enough just 
to isolate ~0 only. 

Examples which illustrate how the convergence of (-,0 improves once the singularity for N2(z) = const, 
y -- 0 has been isolated are given in the paper cited in the footnote. It is found that the above procedure 
is most effective in the case where the dipole velocity c is greater than the velocity of propagation of 
long internal waves cn. 
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3. T R A N S F O R M A T I O N  O F  T H E  E X P R E S S I O N  F O R  T H E  W A V E  T E R M  

It is difficult to obtain the asymptotic form of terms of the series ~1 using formula (1.4) directly, because 
the parameter L of problem (1.3) is unbounded along the integration contour in (1.4). Thus here we 
require a different expression for ~1, for which we can give a uniform estimate of the terms of the 
respective series as n --> oo. The double integral from which formula (1.4) was Obtained [2] can be written 
in the form 

~l =--Ira j I J Dd~- S Dd~ de (3.1) 
/I; 0 [o_ a+ 

h0;X,~)sin([~xcos0)cos([]~ysin0), Re[~ ~ I> 0 D = - - ~ G ( z  - 

where G(z, ~; L, 13;) is Green's function of problem (1.5), the integration contour ~_ goes along the real 
axis from zero to infinity, avoiding the poles of G from below along small semi-circles in the complex 
plane of the parameter 13 and contour ~+ is the complex conjugate of t~_. 

Making the replacement of variables 

~ = ~,'i;2 ; ~, ~-- (CCOSO)-2; d e = ( 2 c ~ , ) - l ( ~ , - c - 2 ) - ) ~ d ' A ,  

we change the order of integration in (3.1). Then, using the fact that Im ~.. Im 13 ~> 0 on the dispersion 
curves [2], we reduce the expression for ~1 to the form 

8G cos(~ ~ -~ -~c  -2 ) 
F=  

The integration contour co_ passes along the real axis of the parameter L from c -2 to infinity, going 
around the poles of G from below and the contour co+ is the complex conjugate of to_. The variables 
of integration in (3.2) are the parameters of the problem 

u,, + 7~Q(z;x)v = 0 (-h < z < 0), v (0) =v (-h) = 0; Q = N 2(z)- x2 (3.3) 

For real x ~> Nm = maxN(z), problem (3.3) has no positive eigenvalues L. Hence, for x ~ Nm Green's 
function has no poles in the neighbourhood of the positive part of the real axis ~. Thus, we can take 
finite limits from 0 to Nm in the integration with respect to x in (3.2). Using the theorem of residues to 
compute the inner integrals in (3.2), we obtain 

~t =2 ~m'csin Xt H(~'n -c-2) ~ fn(Y'z'ho;'Odx (3.4) 
C 0 C n=! 

~ C ~ 2  

where ~(x)  and Un(Z; x) are the eigenvalues and eigenfunctions df problem (3.3). 
Expression (3.4) is more convenient than (1.4) because the corresponding problem (1.5) is reduced 

to the form (3.3). 

4. I S O L A T I N G  T H E  S I N G U L A R I T Y  O F  T H E  W A V E  T E R M  

The asymptotic formfn0 of terms of series (3.4) as n -~ ~ is derived from the known asymptotic forms 
[6] of the eigenvalues En and eigenfunctions On of problem (3.3). The asymptotic forms of ~,n and on as 
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n ~ oo depend on the number of turning points---the solutions of the equation N(z) = x. We shall assume 
that the function N(z) is sufficiently smooth and is either monotone or has one maximum at the point 
z = Zm, Nm = N(zm) and N'(z) ~ 0 for z ,  Zm. Then problem (3.3) has no more than two turning points 
zl(x) < z2(x) for 0 ~< x < Nm and Q(z; x) > 0 for z] < z < z2. We complete the definition of the function 
Zk(X) (k = 1, 2) by putting zl(x) = -h when Q(-h; x) > 0 and z2(x) = 0 when Q0; x > 0. Denoting the 
number of turning points by v, we can now write the formulae of [6] for the asymptotic forms Xn and 
on for v = 0, 1 or 2 in the form 

2L~n =~'no(x)l J('c)+O(n-l), ~'nO = g n - v T t l 4  

u.(z;X) = Q-¼ sin[~,nol l J +~vlt/4] + O(n-i ), Q(z; x) > 0 (4.1) 

vm(-ho;l: ) = Qo~,nO J-t cos[~,mol o I J + I~vlt 14] + 0(1) 

vn(z;x)=O(n-'), v,~(z;'c)=O(n'), Q(z;~)<O 

~(~)=~-ho,x);  %=0, e t=e2=t  

t(z,'~) = j 4"a(z' , 'c~' ,  to('O = t(-ho,'O 
Zl 

o 
J =  I Q(z,~)u2n(z,~) dz= l(z2,x) +O(n-l) 

- h  

The asymptotic forms (4.1) for ~-n cannot be used when I x - N ( -  h) I '< 1, I • - N(0) j ,< 1 and 
J x - Nm J '< 1. Moreover, the asymptotic forms of the eigenfunctions are invalid in the neighbourhood 
of turning points for Iz - Zk(X) J "< 1. The uniform asymptotic forms of solutions of problem (3.4) can 
be expressed in terms of Airy functions [6]. It can be shown that the errors arising from the use of non- 
uniform asymptotic forms in integral (3.4) are of smaller order as n -~ oo than the principal terms of 
the asymptotic forms. From formulae (4.1) we deduce that as n --> oo 

fn --]'nO 

2_az  '~ t x X 

Hence it follows that fn = O(1) as n ~ m, and so the series 

(4.2) 

¼ 
1 ~ x 

S o = ~ ' ~ ( - ~ ' )  ( c t g ~ D _ + c t g } D ÷ >  v = O  

So=iT<V) [i< 7 ~< 2 ÷) + 

+ ~, (-1)=[5(D_+2-4m)+g(D+-4m)l} ,  v = l  
m "4o 

we derive the following expressions 

sinnot-- . ictg~.  , ~, eosnot 
n=l  n= l  2 m--- .~  ~. E J 

must be considered in a generalized sense. 
Substituting (4.2) into (4.3), we first convert the product of the trigonometric functions into sums. 

Then, using the formulae 

(4.4) 

$ =  ~, fn, So = ~, fn0 (4.3) 
n=l  n= l  
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=' (,,."o F So 

D., .  -- ( / +  to  - 

Thus, we have found the sums of the series So, that is the singularity function, which has absorbed 
the singularity of the integrand in (3.4). The formula 

~l = ~1o + ~I (4.5) 
2 u= 

gl0 = c  ~ xsin xt S °d rc  

~l I'~v= xX ] 
Tit = c ,  a 

where f~ is the interval for x in which Q(z', x) > 0, is the sum of terms with an isolated singularity and 
a convergent series, and can be used to calculate wave perturbations generated by a dipole near the 
plane y = 0. 

Examples which show the improvement in convergence of the expansion in powers of modes ~l after 
the two stages of isolating singularities for N~(z) = const, together with the perturbation patterns in 
the plane y = 0, are given in the paper cited in the footnote. 

Note that the condition on the smoothness of the function N(z) under which the singularity of the 
term ~t was isolated was stronger than that required for ~.  In particular, if the function N(z) is piecewise- 
constant, which simplifies the calculation of the dispersion dependences of problems (1.5) and (3.3), 
there are no asymptotic forms (4.1) or asymptotic forms of terms of series (3.4) derived from them. 

Analysis of formulae (1.2), (2.2) and (4.5) reveals a relatively simple dependence of the terms G0 and 
~1 on the dipole velocity c. For c >> 1 in the near region the perturbations of the fluid depend only slightly 
on both the parameter c and on the stratification, and the wave perturbations behind the dipole are of 
order c -t, their longitudinal scale being proportional to c and the transverse scale being slightly dependent 
o n  C. 
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